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Some useful references

I Properties of vector spaces: Axler (1997, Ch. 1–2)

I Various spaces, more analysis than LA: Luenberger (1968,
Ch. 2–3)

I Basic topology of metric spaces: Spivak (1965, Ch. 1),
Mendelson (1990, Ch. 2), Rudin (1976, Ch. 1–2)
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Lecture contents
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2. Properties and structure of linear spaces

3. Analysis on general vector spaces

4. Some important spaces
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General motivations 1

In high school physics, we build intuition with objects called vectors
and scalars, their properties of length and angle, and operations such
as rotations and translations.
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General motivations 2

Even at the elementary level, there is a natural progression:

Geometric (drawing arrows, etc.)
⇓

Algebraic (using symbols, defining operations)

In basic “vector analysis,” what sort of operations do we define?

V + V, S * V, projection, scalar product, vector product, . . .

Defining these for “vectors” in R3 and “scalars” in R is very fruitful!

But in mathematics, R3 is not the only space we’re interested in.
What about Rn or even R∞? Spaces of functions?

4



General motivations 3

What we do in linear algebra:

Define analogous operations on more general spaces
⇓

Investigate their properties (i.e., prove interesting theorems)

We take an axiomatic approach to this.
Why is this a productive endeavour?

We only need to prove things once!
If R3 and R∞ and C[a, b] all satisfy our axioms, and our proofs
only use those axioms, proving it for one implies the others.

Enough heuristics, let’s get started.
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Basic framework: axioms for scalars 1

Our pool of scalars will be a “field” F, defined below.

Defn. If non-empty set F with binary addition/multiplication operations
defined such that (FA), (FM), and (FD) hold, we call F a field. Taking
arbitrary x, y, z ∈ F,

Addition axioms:

FA.1 x, y ∈ F =⇒ (x + y) ∈ F
FA.2 x + y = y + x

FA.3 (x + y) + z = x + (y + z)

FA.4 ∃ x′ ∈ F, x′ + x = x, ∀ x ∈ F. Denote 0.

FA.5 ∃ x′ ∈ x′, x′ + x = 0. Denote −x.
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Basic framework: axioms for scalars 2

Multiplication and distribution axioms:

FM.1 x, y ∈ F =⇒ xy ∈ F
FM.2 xy = yx

FM.3 (xy)z = x(yz)

FM.4 ∃ x′ ∈ F, x′x = x, ∀ x ∈ F. Denote 1.

FM.5 ∃ x′ ∈ x′, x′x = 1. Denote 1/x.

FD.1 x(y + z) = xy + xz

(*) Note Q,R,C with usual operations are fields.
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Basic framework: axioms for vectors 1

With underlying field F used as our source of scalars, now we discuss
axioms for V , a set from which we get our vectors.

Defn. The non-empty set V , equipped with scalar multiplication and
vector addition operations, is called a (linear) vector space on F when
(VA), (VM), and (VD) below hold. Take u, v,w ∈ V, α, β, 0, 1 ∈ F.

Vector addition axioms:

VA.1 u + v = v + u ∈ V

VA.2 (u + v) + w = u + (v + w)

VA.3 ∃ θ ∈ V, θ + u = u,∀ u ∈ V

VA.4 ∃ u′ ∈ V, u + u′ = θ,∀ u ∈ V . Denote −u.
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Basic framework: axioms for vectors 2

Scalar multiplication and distribution axioms:

VM.1 (αβ)u = α(βu) ∈ V

VM.2 0u = θ,∀ u ∈ V

VM.3 1u = u,∀ u ∈ V

VD.1 α(u + v) = αu + αv

VD.2 (α+ β)u = αu + βu

Typically we just denote all additive identities by 0, so let θ = 0.

That’s all the groundwork we’ll need to build our framework.

9



Basic properties
(*) Let U1, . . . ,Un be vector spaces on common field F. Then with the
usual definition of the Cartesian product, verify U1 × · · · × Un is a
vector space on F.

(*) The following properties follow from our axioms on V :

VM.4 α0 = 0
VD.3 (α− β)x = αx− βx
VD.4 α(x− y) = αx− αy
VC.1 x + y = y + z =⇒ x = z
VC.2 α 6= 0, αx = αy =⇒ x = y
VC.3 x 6= 0, αx = βx =⇒ α = β

VM.5 (−α)x = α(−x) = −(αx)

VM.6 xy = 0 =⇒ x = 0 or y = 0

(*) For vector space V , additive identity is always unique. Also, for
each v ∈ V , additive inverse always unique.
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Subspaces

Certain subsets of vector spaces will be of particular interest:

Defn. Let V be a vector space on field F. Taking X ⊆ V , if

u + v ∈ X

αu ∈ X

∀ u, v ∈ X, α ∈ F, then we call X a (linear) subspace of V .

Subspaces are thus the subsets closed under vector sums and scalar
products.

(*) Note X ⊆ V a subspace ⇐⇒ X is a vector space.
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Basic framework of linear spaces

Example. (*) Given the “usual” algebraic operations, the following are
linear spaces. Consider the operations and the vector space and field
upon which they live.

I Fn, given field F.

I F∞ = {(x1, x2, . . .) : xi ∈ F, i = 1, 2, . . .}, given field F.

I P(F) = {p : p(x) = α0 + α1x + · · ·+ αmxm}, given field F, and
coefficients α ∈ Fm,m ≥ 1.

I {(x1, x2, . . .) ∈ R∞ : xn → 0}
I {f : [a, b]→ R; f continuous on [a, b]}.
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Sums and decompositions into direct sums
Defn. Let V be a vector space, and U1, . . . ,Un ⊂ X be subsets. We
define the sum of these sets respectively as

U1 + · · ·+ Un
..= {u1 + · · ·+ un : ui ∈ Ui, 1 ≤ i ≤ n}.

If for every z ∈ V , we have that each representation

z = u1 + · · ·+ un, where ui ∈ Ui, 1 ≤ i ≤ n

is unique, then we write V = U1⊕ · · · ⊕Un, the direct sum of the Ui.

What operations preserve linearity?

Given a sum, under what conditions
is it a direct sum decomposition?
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Basic properties of sums
Let U,W,U1, . . . ,Un ⊂ V be subspaces of vector space V .
(*) Then,

V = U1 ⊕ · · · ⊕ Un ⇐⇒ U1 + · · ·+ Un = V

and 0 = u1 + · · ·+ un uniquely ui = 0.

(*) This leads to a nice corollary,

V = U ⊕W ⇐⇒ V = U + W and U ∩W = {0}.

(**) Sums and intersections (happily) preserve linearity:

U + W and U ∩W are subspaces.

(*) Note this extends to arbitrary sums/intersections of subspaces.
(*) Unions need not preserve linearity.
(*) For subspaces U,W ⊂ V , have that [U ∪W] = U + W.
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Linear combinations
Defn. Given vector space V on F, for any m ≥ 1 elements
x1, . . . , xm ∈ V and α ∈ Fm, we call

α1x1 + · · ·+ αmxm

a linear combination of these elements.

(*) Note we only defined pairwise sums, but the axioms imply this is
notation is unambiguous.

(*) If S ⊂ V is a subspace then S closed under linear combinations.

Defn. For subset T ⊂ V , define

[T] ..= {all linear combinations of elements in T}
called the subspace generated by T , or the “span” of T .

(*) Validate this defn; [T] a subspace of V , the “smallest” containing T .
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Translations of linear spaces
Example. Consider the hyperplane H ⊂ Rn given by

H = {x : αTx = b}, b 6= 0.

(*) While defined by a linear relation, this is not a subspace.

Defn. Any W ⊂ V containing all lines through any two points we call
an affine set. That is, for u, v ∈ W, have

λu + (1− λ)v ∈ W, ∀λ ∈ R.

The affine hull of a set T ⊂ V is defined

aff T ..= ∩Wi

intersection over all affine sets Wi ⊂ V s.t. T ⊂ Wi.

(*) Validate this definition; aff T is well-defined, is affine.
(*) Every affine set is a translation of a subspace.

16



Linear dependence, dimension, basis
Foundational concepts for analysis of linear spaces.
Assume V a vector space on F.

Defn. Take non-empty S ⊂ V . We say x ∈ V is linearly dependent
on S if x is a linear combination of elements of S. Equivalently,

x is linearly dependent on S ⇐⇒ x ∈ [S].

If this doesn’t hold, say x is linearly independent of S. Analogously,
say S ⊂ V is a linearly independent set of vectors when

u lin indep of S \ {u}, ∀ u ∈ S.

(*) For any finite set {x1, . . . , xn} ⊂ V , the following is key:

{x1, . . . , xn} is linearly indep. ⇐⇒
n∑

i=1

αixi = 0 implies all αi = 0.
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Linear dependence, dimension, basis
Defn. We call a vector space V finite dimensional if there exists a
finite subset B ⊂ V such that [B] = V . If no such finite subset exists,
call V infinite-dimensional.

If B is linearly independent, call B a basis of V .

(*) If {v1, . . . , vn} a basis of V , then every v ∈ V may be uniquely
represented in the form

v = α1v1 + · · ·+ αnvn.

(*) In fact, the uniqueness of this representation characterizes
{v1, . . . , vn} as a basis.

Does a basis B always exist?
Can we make any statements about its length |B|?

Is dimensionality monotonic in some sense?
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Linear dependence, dimension, basis

(**) The following foundational results are valid:

Let V be a finite-dim vector space. Then,

I ∃B ⊂ V s.t. B a basis of V
I if B,C bases of V, then |B| = |C|.
I S ⊂ V a subspace =⇒ S finite-dim.

I S ⊂ V a subspace =⇒ |BS| ≤ |BV |, each respective bases.

These results completely motivate a
(now well-definable) dimension notion.
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Linear dependence, dimension, basis

Defn. Let V be a finite-dimensional vector space. Define the
dimension of V by dim V ..= |B|, where B is any basis of V .
If V is infinite-dim, let dim V ..=∞, if V = {0}, let dim V = 0.

(*) Clearly we have our monotonicity, where subspace S ⊂ V satisfies

dim S ≤ dim V.

As well, one may show that if we know dim V = n, we only need one
more piece of information to validate a given {v1, . . . , vn} ⊂ V as a
basis, since

[{v1, . . . , vn}] = V =⇒ {v1, . . . , vn} a basis of V

{v1, . . . , vn} lin indep =⇒ {v1, . . . , vn} a basis of V.

20



Linear dependence, dimension, basis

Let S,T,U,U1, . . . ,Un ⊂ V be subspaces, dim V <∞.

(**) Handily, it is possible to verify

dim(S + T) = dim S + dim T − dim(S ∩ T)

dim(U1 + · · ·+ Un) ≤ dim U1 + · · ·+ dim Un.

(*) Unfortunately, the following does not hold in general:

dim(S + T + U) = dim S + dim T + dim U − dim(S ∩ T)

− dim(S ∩ U)− dim(T ∩ U) + dim(S ∩ T ∩ U).
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Linear dependence, dimension, basis
Interestingly, the “structure” of vector space V , dim V <∞ is captured
well by its dimension.

(*) For any vector space V , dim V = n, there exist one-dim V1, . . . ,Vn

s.t.

V = V1 ⊕ · · · ⊕ Vn.

(*) Also, if S ⊂ V is a subspace, then

dim S = dim V =⇒ S = V.

(**) Taking subspaces U1, . . . ,Un ⊂ V ,

V = U1 + · · ·+ Un and dim V =

n∑
i=1

dim Ui ⇐⇒ V = U1 ⊕ · · · ⊕ Un.

This proof is another straightforward exercise.
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Brief analysis review
Linear spaces are ubiquitous in mathematics. To introduce some
important examples, let’s review a few basic concepts from analysis.

Defn. Given set X, a function d : X × X → R+ is called a metric if
∀ x, y, z ∈ X,

M.1 d(x, y) ≥ 0, with equality iff x = y
M.2 d(x, y) ≤ d(x, y) + d(y, z)
M.3 d(x, y) = d(y, x)

We call X equipped with a metric d a metric space.

(**) The following are metric spaces:
I Rn with d(x, y) ..= (

∑n
i=1(xi − yi)

2)1/2

I Rn with d(x, y) ..= maxi |xi − yi|
I C[a, b] with d(f , g) ..=

∫ b
a |f (t)− g(t)| dt

I d(f , g) ..= supa≤x≤b |f (x)− g(x)|, f , g bounded on [a, b] ⊂ R.
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Brief analysis review
Defn. Denoting the ε-radius ball at x0 in metric space X by

εB(x0) ..= {x ∈ V : d(x, x0) < ε},

for any S ⊂ X, call u ∈ S an interior point if ∃ ε > 0 s.t.

εB(u) ⊂ S.

Denote all such points by int S, the interior of S. If S = int S, call S an
open subset of X.

Call p0 ∈ V a limit point of S ⊂ V if ∀ δ > 0,

∃ x ∈ S, x 6= p0, s.t. x ∈ δB(p0).

If S∗ is all limit points of S, call S ..= S ∪ S∗ the closure of S. Call S a
closed subset of X when S = S.
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Vector “magnitude” in linear spaces

Defn. If V a vector space on field F = R or C, we call a map
x 7→ ‖x‖ ∈ R+ a norm if ∀ u, v ∈ V, α ∈ F,

N.1 ‖u‖ > 0 for u 6= 0, and ‖0‖ = 0.

N.2 ‖u + v‖ ≤ ‖u‖+ ‖v‖
N.3 ‖αu‖ = |α|‖u‖

We call V equipped with a norm a normed linear space.

(*) Note any norm on V induces a valid metric on V .
(*) What about the converse? Consider a “reverse indicator” metric.
(*) C[a, b] with ‖f‖ ..= supa≤x≤b |f (x)| is normed vec space.
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Convergence in normed linear spaces

Let (X, ‖ · ‖) be a normed vector space, and (xn) a sequence of
vectors x1, x2, . . . ∈ X.

Defn. We say a sequence (xn) converges to x ∈ X (in the norm
‖ · ‖), denoted xn → x,

whenever lim
n→∞

‖xn − x‖ = 0,

noting (‖xn − x‖) is a sequence of real numbers.

(*) The limits of convergent sequences are unique.
(*) S ⊂ X is closed ⇐⇒ Every sequence (xn) in S converges in S.
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Continuous maps in normed linear spaces

Once again say (X, ‖ · ‖X), (Y, ‖ · ‖Y), are normed vector spaces.

Defn. Continuity of f : X → Y extends in the natural way, of course.
Namely, f is continuous at x0 ∈ X if ∀ ε > 0, ∃ δ > 0 s.t.

‖x− x0‖X < δ =⇒ ‖f (x)− f (x0)‖Y < ε.

Clearly this depends on both norms.

(*) f is continuous at x0 ⇐⇒ xn → x0 implies f (xn)→ f (x0).
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Banach spaces

Defn. We call (xn) a Cauchy sequence if ∀ ε > 0, ∃N0 <∞ s.t.

m, n ≥ N0 =⇒ ‖xn − xm‖ < ε.

If all Cauchy sequences on X converge, we say X is complete (in
norm ‖ · ‖). We call a complete normed linear space a Banach space.

The “Cauchy condition” is precisely why Banach spaces are nice.

(*) All Cauchy sequences are bounded in norm ‖ · ‖ .
(*) All convergent sequences are Cauchy.
(*) C[a, b] with ‖f‖ ..= supa≤x≤b |f (x)| is Banach.

(**) C[a, b] with ‖f‖ ..=
∫ b

a |f (x)| dx is not Banach.
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More on Banach spaces

(*) If X,Y are Banach, the “usual” product space (X × Y, ‖ · ‖) with
‖ · ‖ ..= ‖ · ‖X + ‖ · ‖Y is Banach.

(*) Let X be Banach; subset S ⊂ X is complete ⇐⇒ S is closed.

(**) Another key result: if X is a normed linear space, for S ⊆ X,

dim S <∞ =⇒ S is complete.
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Example: `p space, 1 ≤ p ≤ ∞

Here we introduce “the” classical Banach space.

Defn. Define `p-space for 1 ≤ p <∞ by

`p
..=

{
(x1, x2, . . .) :

∞∑
i=1

|xi|p <∞

}
.

The norm of interest is of course ‖x‖p
..= (

∑∞
i=1 |xi|p)1/p.

For the p =∞ case, we consider bounded sequences, and intuitively
we define ‖x‖∞ ..= sup |xi|.
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Example: Lp(Ω,A,P) space, 1 ≤ p ≤ ∞
Let (Ω,A,P) be a probability space.
Defn. We define Lp-space on (Ω,A,P) for 1 ≤ p <∞ by

Lp
..=

{
h : E |h|p =

∫
Ω
|h(ω)|p P(dω) <∞

}
,

and the usual norm is ‖h‖p
..= (E |h|p)1/p.

For p =∞ case, consider bounded functions supω |h(ω)| <∞.

Minor complication:
Even if g, h ∈ Lp are g 6= h, we might have g = h a.e. [P].

(*) For those familiar with Lebesgue integration, why is defining
‖h‖∞ = supω |h(ω)| inadvisable? Any ideas for an alternative?
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Both `p and Lp are Banach
Very important, classic results, proofs are critical for any serious
student of analysis (out of scope here).

The basic flow (` case) is:
(1) For x ∈ `p, y ∈ `q where 1/p + 1/q = 1, prove Hölder’s inequality,

∞∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q.

(2) Using Hölder, for x, y ∈ `p prove Minkowski’s inequality:

x + y ∈ `p and ‖x + y‖p ≤ ‖x‖p + ‖y‖p,

namely the triangle inequality. Definiteness easy on `p, but requires
thought on Lp.

(3) Then just need completeness. `p is basic analysis, Lp requires
some Lebesgue theory.
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Inner product and Hilbert space
Consider vector space V on field F = R or C.

Defn. Call 〈·, ·〉 : V × V → C an inner product on V if
∀ u, v,w ∈ V, α ∈ F,

IP.1 〈u, v〉 = 〈v, u〉
IP.2 〈αu, v〉 = α〈u, v〉
IP.3 〈u + w, v〉 = 〈u, v〉+ 〈w, v〉
IP.4 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 ⇐⇒ u = 0.

(*) Additivity holds in both arguments. Also, 〈u, αv〉 = α〈u, v〉.

(**) We’ll later see that an IP on V induces a norm on V (Lec 4).

Defn. Call (V, 〈·, ·〉) an inner product space. A complete IP space is
called Hilbert space. Much more later.
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