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Abstract

We study learning algorithms that seek to min-
imize the conditional value-at-risk (CVaR),
when all the learner knows is that the losses
(and gradients) incurred may be heavy-tailed.
We begin by studying a general-purpose esti-
mator of CVaR for potentially heavy-tailed
random variables, which is easy to implement
in practice, and requires nothing more than fi-
nite variance and a distribution function that
does not change too fast or slow around just
the quantile of interest. With this estimator
in hand, we then derive a new learning algo-
rithm which robustly chooses among candi-
dates produced by stochastic gradient-driven
sub-processes, obtain excess CVaR bounds,
and finally complement the theory with a re-
gression application.

1 INTRODUCTION

In machine learning problems, since we only have ac-
cess to limited information about the underlying data-
generating phenomena or goal of interest, there is sig-
nificant uncertainty inherent in the learning task. As
a result, any meaningful performance guarantee for
a learning procedure can only be stated with some
degree of confidence (e.g., a high probability “good per-
formance” event), usually with respect to the random
draw of the data used for training. Assuming some loss
L(w; z) ≥ 0 depending on parameter w ∈ W ⊆ Rd and
data realization z ∈ Z, given random data distributed
as Z ∼ P, the de facto standard performance metric in
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machine learning is the risk, or expected loss, defined

R(w) ..= EP L(w;Z) =

∫
Z
L(w; z)P(dz), w ∈ W.

(1)

The vast majority of research done on machine learn-
ing algorithms provides performance guarantees stated
in terms of the risk (Haussler, 1992; Devroye et al.,
1996; Anthony and Bartlett, 1999). This risk-centric
paradigm goes beyond the theory and reaches into the
typical workflow of any machine learning practitioner,
since “off-sample performance” is typically evaluated
by using the average loss on a separate set of “test
data,” an empirical counterpart to the risk studied
in theory. While the risk is convenient in terms of
probabilistic analysis, it is merely one of countless pos-
sible descriptors of the distribution of L(w;Z). When
using a learning algorithm designed to minimize the
risk, one makes an implicit value judgement about how
the learner should be penalized for “typical” mistakes
versus “atypical” but egregious errors.

As machine learning techniques are applied in increas-
ingly diverse domains, it is important to make this
value judgement more explicit, and to offer users more
flexibility in controlling the ultimate goal of learning.
One of the best-known alternatives to the risk is the
conditional value-at-risk (CVaR), which considers the
expected loss, conditioned on the event that the loss
exceeds a user-specified (1 − α)-level quantile, here
denoted for each w ∈ W as

Cα(w) ..=
1

α
EP L(w;Z)I{L(w;Z)≥Vα(w)} (2)

=
1

α

∫
L(w;z)≥Vα(w)

L(w; z)P(dz),

where Vα(w) ..= inf {u ∈ R : P{L(w;Z) ≤ u} ≥ 1− α}
(called value-at-risk, or VaR). Driven by influential work
by Artzner et al. (1999) and Rockafellar and Uryasev
(2000), under known parametric models, the problem
of estimating and minimizing the CVaR reliably and
efficiently has been rigorously studied, leading to a wide
range of applications in finance (Krokhmal et al., 2002;
Mansini et al., 2007), and even some specialized settings
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of machine learning tasks (Takeda and Sugiyama, 2008;
Chow et al., 2016). In general machine learning tasks,
however, a non-parametric scenario is more typical,
where virtually nothing is known about the distribution
of L(w;Z), adding significant challenges to both the
design and analysis of procedures designed to minimize
the CVaR with high confidence.

Our contributions In this work, we consider the
case of potentially heavy-tailed losses, namely a learn-
ing setup in which all the learner knows is that the
distribution of the loss and its gradients have finite
variance, nothing more. It is unknown in advance
whether the feedback received is statistically congenial
in the sub-Gaussian sense, or highly susceptible to out-
liers with infinite higher-order moments. Our main
contributions:

• New error bounds for a large class of estimators
of the CVaR for potentially heavy-tailed random
variables (Algorithm 1, Theorem 3).

• A general-purpose learning algorithm which runs
stochastic GD sub-processes in parallel and uses
the new CVaR estimators to robustly validate the
strongest candidate (Algorithm 2), which enjoys
sharp excess CVaR bounds (Theorem 4), when
both the loss and gradients can be heavy-tailed.

• An empirical study (section 3) highlighting the po-
tential computational advantages and robustness
of the proposed approach to CVaR-based learning.

Review of related work To put the contributions
stated above in context, we give an overview of the two
key strands of technical literature that are closely re-
lated to our work. First, an interesting line of work has
recently developed which handles risk-averse learning
scenarios where the losses can be heavy-tailed, with
key works due to Kolla et al. (2019), Prashanth et al.
(2019), Bhat and Prashanth (2020), and Kagrecha et al.
(2020). These works all consider some kind of sub-
routine for robustly estimating the CVaR, as we do
as well. The actual estimation procedures and proof
techniques differ, and we provide a detailed comparison
of resulting error bounds in section 2.2.1. Furthermore,
the latter three works only consider rather specialized
learning algorithms in the context of bandit-like online
learning problems, whereas the generic gradient-based
procedures we study in section 2.3 have a much wider
range of applications. Second, recent work from Car-
doso and Xu (2019) and Soma and Yoshida (2020) also
consider tackling the CVaR-based learning problem us-
ing general-purpose gradient-based stochastic learning
algorithms. However, these works assume a bounded
(and thus sub-Gaussian) loss; we discuss differences

in technical assumptions in detail in Remark 5, but
the most important difference is that their setup pre-
cludes the possibility of heavy-tailed losses and is thus
more restrictive statistically than ours, which naturally
leads to different algorithms, proof techniques, and
performance guarantees.

2 THEORETICAL ANALYSIS

This section is broken into three sub-sections. First
we establish notation and basic technical conditions in
section 2.1. We then study pointwise CVaR estimators
in section 2.2, and subsequently leverage these results
to derive a new learning algorithm with performance
guarantees in section 2.3.

2.1 Preliminaries

In the context of learning problems, random variable
Z denotes our data, taking values in some measurable
space Z with P the probability measure induced by
Z. The set W ⊆ Rd is a parameter set from which the
learning algorithm chooses an element. We reinforce
the point that the ultimate formal goal of learning
here is to minimize Cα(·) defined in (2) over W , where
0 < α < 1 is a user-specified risk-level parameter. This
is in contrast with the traditional risk-centric setup,
which seeks to minimize R(·) defined in (1). For the
pointwise estimation problem in section 2.2 to follow,
to cut down on excess notation, we simply take X =
L(w;Z), re-christen P as the distribution of X, and
write the distribution function as FP(u) ..= P{X ≤ u}
for u ∈ R. Similarly, since the choice of w ∈ W is not
important in section 2.2, there we shall write simply
Cα and Vα for the CVaR and VaR of X, and return to
the w-dependent notation Cα(w) and Vα(w) in section
2.3. For any m ≥ 1, we denote by [m] ..= {1, . . . , bmc}
all positive integers less than or equal to m. Finally,
let I{event} denote the indicator function, returning 1
when event is true, and 0 otherwise.

Regarding technical assumptions, we shall henceforth
assume that FP : R → [0, 1] is continuous, which in
particular implies that FP(Vα) = P{X ≤ Vα} = 1 −
α for all α. This setup is entirely traditional; see
for example the well-known work of Rockafellar and
Uryasev (2000). In general, if FP has flat regions, there
may be infinitely many 1 − α quantiles; here Vα as
introduced in section 1 is simply defined to be the
smallest one (see Figure 1 for an illustration). The key
technical assumption that will be utilized is as follows:

A1. There exists values 0 < γ < λ <∞ such that for
any |u| ≤ 1, the distribution function induced by
P satisfies γu ≤ |FP(Vα + u)− FP(Vα)| ≤ λu.
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Figure 1: A simple schematic illustrating Vα and the
condition A1(γ, λ).

Obviously, we are assuming that Vα ± 1 are within the
domain of X ∼ P; this is only for notational simplicity,
and the range can be taken arbitrarily small. In words,
assumption A1(γ, λ) is a local assumption of both a
λ-Lipschitz property and a γ-growth property, local in
the sense that it need only hold around the particular
point Vα of interest. The former property ensures
that FP cannot jump with arbitrary steepness in the
region of interest. The latter ensures that FP is not flat
in this region. Finally, we remark that the property
of γ-growth is utilized in key recent work done on
concentration of CVaR estimators under potentially
heavy-tailed data, including Kolla et al. (2019, Prop. 2)
and Prashanth et al. (2019, Lem. 5.1).

2.2 Robust estimation of the CVaR criterion

We begin by considering pointwise estimates, assuming
thatX ∼ P is a non-negative random variable, and that
we have 2n independent copies of X, denoted Xn

..=
{X1, . . . , Xn} for the first half, and Yn ..= {Y1, . . . , Yn}
for the second half. The latter half will be used to
construct an estimator V̂α ≈ Vα. The former half, with
V̂α in hand, will be used to construct an estimator
Ĉα ≈ Cα. As an initial approach to the problem, note
that we can decompose the deviations as∣∣∣Ĉα − Cα∣∣∣ =

1

α

∣∣∣α Ĉα −EPX I{X≥V̂α}

+EPX I{X≥V̂α} −EPX I{X≥Vα}

∣∣∣
≤ 1

α

(∣∣∣α Ĉα −EPX I{X≥V̂α}

∣∣∣
+
∣∣∣EPX

(
I{X≥V̂α} − I{X≥Vα}

)∣∣∣) . (3)

This gives us two terms to control. Starting with the
left-most term, let us first make the notation a bit
easier to manage. Conditioning on Yn makes V̂α ∈ R a
fixed value, and based on this, we define

X ′ ..= X I{X≥V̂α}. (4)

Since V̂α is computed based on available data, and X
is observable, it follows that X ′ itself is observable. De-
note the corresponding sample by X ′n

..= {X ′1, . . . , X ′n},

Algorithm 1 Scaled CVaR under potentially heavy-
tailed data; Ĉ ′α [Xn,Yn].

inputs: samples Xn and Yn, risk level α ∈ (0, 1),
robust sub-routine RobMean.

Sort ancillary data Y ∗1 ≤ Y ∗2 ≤ . . . ≤ Y ∗n .

Set threshold V̂α = Y ∗b(1−α)nc.

Augment data X ′i = Xi I{Xi≥V̂α}, for i ∈ [n].

return: Ĉ ′α [Xn,Yn] = RobMean [{X ′i : i ∈ [n]}].

where we set X ′i ..= Xi I{Xi≥V̂α}. The most direct ap-
proach to this problem is to simply pass this trans-
formed dataset X ′n to a sufficiently robust sub-routine
for mean estimation. More precisely, we desire a sub-
routine RobMean by which assuming only EPX

2 <∞,
for any choice of δ ∈ (0, 1), we can guarantee that

P

{
|RobMean [X ′n]−EPX

′| > cσ′
√

1 + log(δ−1)

n

}
≤ δ,

(5)

where c > 0 is a constant depending only on the
nature of RobMean, σ′ is any quantity bounded as
σ′ ≤

√
EP(X ′)2, and probability is taken with respect

to the random draw of Xn. The final estimator of in-
terest, then, using 2n observations in total, will simply
be defined as

Ĉα ..=
1

α
Ĉ ′α [Xn,Yn] , (6)

where Ĉ ′α [Xn,Yn] ..= RobMean [X ′n] .

This general procedure is summarized in Algorithm 1.

Deriving deviation bounds Before proceeding any
further, the first question to answer is whether or not
such a procedure RobMean can be constructed. In the
following lemma, we summarize the robust mean es-
timation performance guarantees available for these
estimators.
Lemma 1 (Procedures for good Xn event). Imple-
menting RobMean using the following well-known pro-
cedures satisfies (5) at confidence level δ, as follows
(details in appendix).

• Median of means (Lerasle and Oliveira, 2011):
with c ≤ 2

√
e and σ′ =

√
varPX ′, whenever k =

dlog(δ−1)e and n ≥ 2(1 + log(δ−1)).

• M-estimation (Catoni, 2012): c ≤ 2 and σ′ =√
varPX ′, whenever n ≥ 4 log(δ−1).

• Trimmed mean (Lugosi and Mendelson, 2019b):
with c ≤ 9

√
2 and σ′ =

√
varPX ′, whenever n ≥

(16/3) log(8δ−1).
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The preceding lemma settles any issues regarding a
sufficiently accurate sub-routine RobMean under poten-
tially heavy-tailed data. For one concrete example, the
median of means sub-routine amounts to splitting the
index as [n] = ∪kj=1Ij and taking the median of each
subset mean, i.e.,

med{X(1), . . . , X(k)}, where X(j) =
1

|Ij |
∑
i∈Ij

Xi.

Next, note that σ′ depends on V̂α, and thus the second
sample Yn. To remove this dependence, the following
lemma will be useful.
Lemma 2 (Good Yn event). Let the observations
Yn sorted in increasing order be denoted by Y ∗n

..=
{Y ∗i }i∈[n], such that Y ∗1 ≤ Y ∗2 ≤ . . . ≤ Y ∗n . It follows
that with probability no less than 1− 2 exp(−3nα/14)
over the draw of Yn, we have that

V2α ≤ Y ∗(1−α)n ≤ Vα/2.

Writing σ2
α

..= EPX
2I{X≥V2α} − (EPX I{X≥Vα/2})

2, a
straightforward argument (detailed derivation in ap-
pendix) yields high-probability bounds on the two
terms of interest, taking the form∣∣∣α Ĉα −EPX I{X≥V̂α}

∣∣∣ =
∣∣∣Ĉ ′α −EPX

′
∣∣∣

≤ cσα

√
1 + log(δ−1)

n
(7)∣∣∣EPX

(
I{X≥Vα} − I{X≥V̂α}

)∣∣∣ ≤ Vα/2λ√
2γ

√
log(δ−1)

n
.

(8)

Taking (7) and (8) together, applied to (3), we have
essentially proved the following result.
Theorem 3. For any confidence level δ ∈ (0, 1) and
risk level 0 < α < 1/2, assume that A1(γ, λ) holds
and n ≥ log(δ−1) max{1/(2γ)2, 14/(3α)}. Letting Ĉ ′α
be the output of Algorithm 1, and Ĉα = Ĉ ′α/α, with
probability no less than 1− 5δ, we have∣∣∣Ĉα − Cα∣∣∣ ≤ 1

α

(
cσα +

Vα/2λ√
2γ

)√
1 + log(δ−1)

n
,

where c depends only on the choice of RobMean (specified
in Lemma 1).

Proof of Theorem 3. To prove this result simply in-
volves sorting out the key facts presented above. The
“good” event in the theorem statement is that in which
both (7) and (8) hold together. This condition can fail
if even one of the following bad events takes place:

E1 ..= {(5) fails} , E2 ..= {event of Lemma 2 fails} ,

E3 ..=
{
|V̂α − Vα| >

√
log(δ−1)/(2γ2n)

}
.

First of all, using Lemma 1 and the deviation bounds
given by (5), we have

P(E1) = EYn P [E1 |Yn] ≤ δ.

Next, by Lemma 2, if n ≥ 14 log(δ−1)/(3α), then we
have P(E2) ≤ 2δ. Finally, from the derivation of (8),
whenever n ≥ log(δ−1)/(2γ2), we have P(E3) ≤ 2δ. If
none of these three bad events take place, the good
event holds, i.e., (E1 ∩ E2 ∩ E3)c ⊆ {(7) and (8)}. A
union bound implies that this holds with probability
no less than 1− 4δ, and via the original decomposition
(3), we have∣∣∣Ĉα − Cα∣∣∣ ≤

1

α

(
cσα

√
1 + log(δ−1)

n
+
Vα/2λ√

2γ

√
log(δ−1)

n

)
,

which implies the desired result.

2.2.1 Comparison of estimation error bounds

From the technical literature on CVaR estimation under
potentially heavy-tailed data, the work of Kolla et al.
(2019), Prashanth et al. (2019), and Kagrecha et al.
(2020) are most closely related to our work, and in
this remark we compare our results with theirs. To
align our setup with theirs, we assume access to only n
data points in total, meaning the two data sets used in
Theorem 3 will now be Xn/2 and Yn/2, for simplicity
assuming that n is even. Furthermore, we convert our
high-confidence interval into an exponential tail bound,
which is the form taken by the main results in the cited
works. First, given just n observations, our Theorem 3
implies that

P
{∣∣∣Ĉα − Cα∣∣∣ > ε

}
≤ 5 exp

(
−n (αε/Bours)

2
)
,

with Bours
..= cσα +

√
2Vα/2λ

γ
.

The estimator Ĉα considered by Prashanth et al. (2019,
Thm. 4.1), on the other hand, yields bounds of the
form

P
{∣∣∣Ĉα − Cα∣∣∣ > ε

}
≤ 8 exp

(
−n (αε/B′)

2
)
,

where the factor B′ is simply left as a “distribution-
dependent factor.” Looking at their proof, in order to
obtain concentration of the VaR estimator, they also
effectively require a γ-growth property and have mo-
ment dependence. Furthermore, their proof is rather
specialized to an estimator borrowed from Bubeck et al.
(2013), which does random truncation that is rather
unintuitive when taken outside the context of online
learning problems. Another closely related result pub-
lished very recently is due to Kagrecha et al. (2020).
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They consider a more natural estimator, which simply
truncates the data to |Xi| ≤ b before passing it to the
classical empirical CVaR estimator routine. While b is
a user-specified parameter, it must be taken larger than
a value which depends on the desired deviation level ε.
In particular, since it must satisfy b = Ω(EPX

2/(αε)),
when ε is sufficiently small, one ends up with bounds
of the form

P
{∣∣∣Ĉα − Cα∣∣∣ > ε

}
≤ 6 exp

(
−nα3ε4/B′′

)
,

with B′′ ..= 616
(
EPX

2
)2
.

Their results are obtained using very weak assump-
tions, the finiteness of EPX

2 is all that is required.
The price paid for this generality is clearly the poor
dependence on α, ε, and the moments. In contrast,
under mild additional assumptions on the behaviour of
the distribution function around Vα (namely A1(γ, λ)),
we obtain much stronger results, using a very simple
proof strategy, which can be readily applied to a wide
collection of estimation routines.

2.3 CVaR-driven learning algorithms

We now proceed to our main point of interest, namely
learning algorithms which seek to minimize the CVaR of
the loss distribution, defined in (2), given only a sample
Zn ..= {Z1, . . . , Zn}, independent copies of Z ∼ P.
Computationally, it is convenient to introduce

fα(w, v;Z) ..= v +
1

α
[L(w;Z)− v]+ , (9)

defined for all w ∈ W, v ∈ R. Denote the expected
value denoted by Fα(w, v) ..= EP fα(w, v;Z), not to
be confused with FP from the previous section. This
expectation has the useful property of being convex
and continuously differentiable in v, and being related
to the quantities Cα(w) and Vα(w) through

min{Fα(w, v) : v ∈ R} = Fα(w, Vα(w)) = Cα(w),

which holds for any choice of w ∈ W (Rockafellar
and Uryasev, 2000, Thm. 1). This implies that if we
have some candidates (ŵ, v̂) such that Fα(ŵ, v̂) ≤ ε,
then Cα(ŵ) ≤ Fα(ŵ, v̂) ≤ ε. Furthermore, solv-
ing the joint problem is equivalent to solving the
two problems separately (Rockafellar and Uryasev,
2000, Thm. 2), meaning that F ∗α = C∗α, where we
denote F ∗α ..= inf{Fα(w, v) : (w, v) ∈ W × R}, C∗α ..=
inf{Cα(w) : w ∈ W}. When L(w;Z) is convex in w,
the function Fα is jointly convex in its arguments, and
thus whenW ⊆ Rd is a convex set, convex optimization
techniques can in principle be brought to bear on the
problem.

Problems with robust objectives Recalling the
analysis of the previous section 2.2, we constructed
a procedure for obtaining sharp estimates of Cα(w),
pointwise in w, under potentially heavy-tailed data. To
extend the procedure given by Algorithm 1 and (6) to
this setting, given an extra sample Z ′n, compute

Ĉ ′α(w;Z ′n) ..=

Ĉ ′α [X = {L(w;Z ′i) : i ∈ [bn/2c]} ,
Y = {L(w;Z ′i) : n/2 < i ≤ n}] , (10)

and set Ĉα(w) = Ĉ ′α(w;Z ′n)/α. The most naive ap-
proach to this problem would be to replace the empiri-
cal mean with this robust estimator (10), namely any
algorithm implementing

ŵ ∈ arg min
w∈W

Ĉ ′α(w;Zn)/α.

The statistical properties of such an ŵ are naturally of
interest, but the computational task of actually obtain-
ing such a ŵ is highly non-trivial; for example the work
of Brownlees et al. (2015) consider a similar quantity in
the case of traditional risk minimization, but algorith-
mic considerations are left completely abstract. Indeed,
even if L(·, z) is convex and smooth for all z ∈ Z, we
have no guarantee that Ĉ ′α(·;Zn) will be. The exact
same issues hold if we tackle a robustified version of
the joint optimization task, namely

(ŵ, v̂) ∈ arg min
(w,v)∈W×R

RobMean [{fα(w, v;Zi) : i ∈ [n]}] ,

where RobMean is based on any procedure given in
Lemma 1. All the robust estimates given by RobMean
(or Algorithm 1) are easy to compute for any (w, v)
or w, but are hard to minimize. It thus seems wiser
to use such sub-routines for validation, i.e., to check
that a particular candidate ŵ actually gets close to
minimizing Cα(·) with sufficiently high confidence.

A practical approach under heavy tails With
this intuition in mind, we consider a simple divide-
and-conquer procedure with independent sub-processes
running stochastic gradient descent for the joint opti-
mization of Fα, and a final robust validation step to
determine a final candidate (Holland, 2021b,a). This
is summarized in Algorithm 2, and we unpack the
notation below.

Most of the steps in Algorithm 2 are transparent; it
just remains to provide a more precise definition of
the SGD sequence referred to in the third line. Given
a sequence of observations (Z1, . . . , Zt) of arbitrary
length t ≥ 1, the core update is traditional projected
stochastic sub-gradient descent:

(ŵt, v̂t) =

ΠW×[0,V ] [(ŵt−1, v̂t−1)− βtGα(ŵt−1, v̂t−1;Zt)] (11)
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Algorithm 2 Fast gradient-based CVaR learning with robust verification.

inputs: samples Zn and Z ′n, initial value (ŵ0, v̂0), parameters α ∈ (0, 1), 0 < V <∞, 1 ≤ k ≤ n.

Split
k⋃
j=1

Ij = [n], with |Ij | ≥ bn/kc, and Ij ∩ Il = ∅ when j 6= l. . Disjoint partition.

For each j ∈ [k], set (w(j), v(j)) to the mean of sequence SGD(ŵ0, v̂0;ZIj ,W × [0, V ]).

Compute ? = arg min
j∈[k]

Ĉ ′α

(
w(j);Z ′n

)
. . Robust validation via (10), based on Algorithm 1.

return w(?).

The update direction here is Gα(w, v;Z) ∈
∂fα(w, v;Z), namely any vector from the sub-
differential of the map (w, v) 7→ fα(w, v;Z). The oper-
ator Π denotes projection in the `2 norm, and βt ≥ 0
is a step-size parameter. The recursive definition in
(11) bottoms out at t = 1, and is initialized by some
pre-defined (ŵ0, v̂0), passed to the algorithm as an in-
put. The sequence SGD(ŵ0, v̂0;ZIj ,W× [0, V ]) referred
to in Algorithm 2 is simply the sequence of iterates
generated by (11) using data {Zt : t ∈ Ij}; since all Zt
are independent copies of Z ∼ P, the order does not
matter. The key technical assumptions on the data are
summarized below:

A2. Let A1(γ, λ) hold for X = L(w;Z) ≥ 0, for
any choice of w ∈ W. Let W be convex, have
a diameter in `2 norm of 0 < ∆ < ∞. Let
σα ..= max{σα(w) : w ∈ W} < ∞ and V α ..=
max{Vα(w) : w ∈ W} < ∞. Let L(w; z) be a
convex, differentiable function of w for all z ∈ Z,
and let EP ‖∇L(w;Z)‖2 ≤ λ2L for all w ∈ W.

Note σα(w) extends σα from section 2.2 to the case of
X = L(w;Z).

The preceding assumptions clearly allow for poten-
tially heavy-tailed losses and gradients. As a concrete
illustration of this, consider linear regression using
squared error and a linear model, so that L(w;Z) =
(〈w−w∗, X〉+ ε)2, where X is a d-dimensional random
vector, and ε is additive noise. Convexity and differen-
tiability as required by A2 are essentially immediate.
As for the moment bound, noting that ∇L(w;Z) =
2(〈w−w∗, X〉+ε)X, basic algebra and an application of
Cauchy-Schwarz gives us EP ‖∇L(w;Z)‖2 ≤ λ2L, where

λL ≤ 2
√

∆2 EP ‖X‖4 + EP |ε|2‖X‖2 + 2∆EP |ε|‖X‖3.
(12)

In particular, the random noise ε and inputs X need
not be bounded, nor are they required to have finite
higher-order moments. As such, A2 can be satisfied
on problems of practical interest when the “feedback”
(CVaR loss and sub-gradients) is potentially heavy-
tailed. Under this setting, the following performance
guarantee holds.

Theorem 4. Under assumption A2, run Algorithm
2 with parameters 0 < α < 1/2, V = V α, k =
dlog(2dlog(δ−1)eδ−1)e for arbitrary choice of δ ∈ (0, 1),
and fix the step sizes in (11) to

βt = α

√
∆2 + V α

(λ2L + 1)|Ij |

for each sub-process, indexed by j ∈ [k]. We have

Cα(w(?))− C∗α ≤

2
√

2

α

(
cσα +

V α/2λ√
2γ

)√
1 + log(5δ−1)

n

+
e
α

√
k(λ2L + 1)(∆2 + V 2

α)

n

with probability no less than 1− 3δ, where constant c
corresponds to the relevant constant from Lemma 1.
Remark 5 (Discussion of related technical work). As far
as technical conditions go, the convexity and bounded
diameter assumptions align with Soma and Yoshida
(2020, Thm. 3.6). The main difference is that they as-
sume bounded and Lipschitz-continuous losses, which
precludes both heavy-tailed losses and gradients. Al-
gorithmically, they run a single averaged SGD process
using a surrogate objective, for multiple passes over
the data, and further assuming the losses are smooth,
obtain error bounds in expectation. In contrast, as
discussed above, we allow both losses and gradients
to be heavy-tailed, we do not require the gradients
to be Lipschitz. Our high-probability guarantees are
obtained for a procedure which runs multiple SGD
processes in parallel, each of which takes only a single
pass over the subset of data allocated to it. Finally,
we remark that since their procedure does not actually
make any direct estimates of Vα, they do not use an
assumption like A1. Note that it is certainly possible
to modify our Algorithm 2 such that this assumption is
not needed, by doing the final validation step based on
an estimate of Fα instead of Cα. This would remove
the need for A1, and instead result in bounds depend-
ing on the second moment of fα(w, v;Z). The formal
analysis goes through in a perfectly analogous fashion
to our proof of Theorem 4 here. �
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Figure 2: Average and standard deviation of |Ĉα − Cα| over α and n. Left: fixed α = 0.05, increasing n. Right:
fixed n = 10000, increasing α. All methods were essentially the same for the folded-Normal case, given in the
appendix. Top: log-Normal. Bottom: Pareto.

3 EMPIRICAL ANALYSIS

In this section, we start with a numerical investigation
of the efficiency of pointwise CVaR estimation enabled
by the analysis of section 2.2, using concrete imple-
mentations of Algorithm 1, comparing efficient robust
estimators against more naive benchmarks. This is
followed by an empirical analysis of the performance
of CVaR-driven learning algorithms, including Algo-
rithm 2 studied in section 2.3, under an environment
in which the nature of the feedback provided to the
learner is controlled to range between sub-Gaussian
and heavy-tailed.

Accuracy of pointwise estimates First, we con-
sider “static” tests looking at the accuracy of CVaR
estimators newly captured by the analysis of section 2.2.
Recalling the notation of section 2.2, given samples Xn

and Yn, all sampled independently from X ∼ P, the
objective here is to investigate the deviations |Ĉα−Cα|,
in particular how these deviations change for different
estimators Ĉα, distributions P, sample sizes n, and
risk levels α. We consider folded-Normal, log-Normal,
and Pareto distributions for P. We study the classi-
cal empirical estimate (denoted Empirical), random
truncation (Prashanth et al., 2019) (R-Trunc), and Al-
gorithm 1 implemented using median-of-means (MoM)
and Catoni-type M-estimation (Cat). Further details

of the experimental setup are relegated to the sup-
plementary materials.1 Key results are summarized
in Figure 2, where averages and standard deviations
of these deviations over many trials are given. As a
general take-away, we see that using a slightly more
sophisticated estimation procedure can lead to clear im-
provements in estimation in a potentially heavy-tailed
setting. The concrete procedure which tended to per-
form best overall (Cat-12) is a procedure captured by
the theory of section 2.2.

Application to learning algorithms Next, we
conduct “dynamic” tests which look at applications
of Algorithm 2 in section 2.3 to machine learning tasks.
As a natural first application, we consider linear regres-
sion in the context of CVaR-based learning. That is,
random data are generated as pairs Z = (X,Y ) ∼ P
following the relation Y = 〈w∗, X〉 + E, where E is
a zero-mean random noise term independent of X,
and w∗ ∈ W is some pre-fixed vector, and the goal
is to minimize Cα(·) induced by two losses, namely
squared error and absolute deviations, respectively
amounting to L(w;Z) = (〈w − w∗, X〉 − E)2/2 and
L(w;Z) = |〈w − w∗, X〉 − E|. The learner does not
know w∗ and cannot observe E directly, all it has is
access to X and Y , and thus the final loss values (and

1Software repository:
https://github.com/feedbackward/robrisk

https://github.com/feedbackward/robrisk
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Figure 3: Average and standard deviation of excess CVaR for squared error (left-most plots) and absolute error
(right-most plots). Top: Normal. Middle: log-Normal. Bottom: Pareto.

resulting partial derivatives, etc.). We consider Normal,
log-Normal, and Pareto distributions for the noise E.
We compare Algorithm 2 (denoted RV-SGDAve) with
three well-known baseline methods. As a classic base-
line, we run batch gradient descent empirical CVaR-risk
minimization (ERM-GD). As modern alternatives, we run
robust gradient descent using M-estimation (Holland
and Ikeda, 2019) (RGD-M) and median-of-means (Chen
et al., 2017; Prasad et al., 2018) RGD-MoM. Additional
details are given in the supplementary materials.

Representative results are given in Figure 3. While the
sample splitting leads to a small hit in performance
under the Normal case, as a general take-away, we
see that the proposed algorithm offers an appealing
improvement in efficiency, realizing superior CVaR-
risk using far less operations. Furthermore, this is
robust both to the underlying distribution, and the

nature of the underlying loss. That is, even when the
λL-Lipschitz assumption on the loss breaks down (left-
hand side of Figure 3), we see competitive behaviour.

4 FUTURE DIRECTIONS

One appealing future direction is to go beyond CVaR to
more diverse classes of feedback, such as general coher-
ent risks under potentially heavy-tailed data, or even
extensions to completely distinct performance classes
that in some sense mimic human loss/reward systems
(e.g., cumulative prospect theory). Initial explorations
have been made by Bhat and Prashanth (2020), but
the basic theory and algorithmic analysis are still far
from complete. Other notions of conditional expecta-
tion, which do not necessarily depend on quantiles, is
another natural approach of interest.
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A SUPPLEMENTARY MATERIALS

The following materials are provided:

• Additional proofs (section A.1).

• Details of empirical analysis (section A.2).

A.1 Additional proofs

Fuller statement of Lemma 1 For concrete-
ness, some well-known and useful examples of û =
RobMean[{u1, . . . , un}] for arbitrary real values ui are

as follows:

ûMoM = med{u(1), . . . , u(k)} (13)

ûCat = arg min
v∈R

n∑
i=1

ρ

(
ui − v
s

)
(14)

ûLM =
1

n

n∑
i=1

ui I{a≤ui≤b}. (15)

The subscript MoM refers to classical median-of-means,
and thus the set of n points is partitioned into k disjoint
subsets, with u(j) referring to the arithmetic mean
computed on the jth subset (Lerasle and Oliveira, 2011;
Hsu and Sabato, 2016). The estimator marked Cat
refers to any M-estimator such that the convex function
ρ is differentiable, and ρ′ satisfies the key conditions
put forward by Catoni (2012), with s > 0 being a
scaling parameter. The estimator marked LM refers
to the truncated mean estimator studied by Lugosi
and Mendelson (2019b, Sec. 2), where a and b are set
using quantiles and a sample-splitting procedure. In
the following lemma, we summarize the robust mean
estimation performance guarantees available for these
estimators.

Lemma 6 (Full version of Lemma 1). The implemen-
tations of RobMean given in equations (13)–(15) satisfy
(5) at confidence level δ, as follows.

• MoM: with c ≤ 2
√
e and σ′ =

√
varPX ′, whenever

k = dlog(δ−1)e and n ≥ 2(1 + log(δ−1)).

• Cat: with c ≤ 2 and σ′ =
√

varPX ′, whenever
n ≥ 4 log(δ−1).

• LM: with c ≤ 9
√

2 and σ′ =
√

varPX ′, whenever
n ≥ (16/3) log(8δ−1).

• Hol: with c ≤
√

2 and σ′ =
√
EP(X ′)2.

Proof of Lemma 6. All of these estimators require
finite second moments, which trivially holds as
EP(X ′)2 ≤ EPX

2 < ∞ by our assumptions on P.
For the median-of-means estimator MoM, see Devroye
et al. (2016, Sec. 4.1) or Hsu and Sabato (2016) for a
proof. For the Catoni-type estimator Cat, see Catoni
(2012, Prop. 2.4) for a proof and characteristics of s and
ρ′. For the truncated mean estimator LM, see the dis-
cussion and proofs from Lugosi and Mendelson (2019b,
Thm. 1) and Lugosi and Mendelson (2019a, Thm. 6)
for settings of a and b.

Proofs of other supporting results from the
main text

Proof of Lemma 2. Results of this nature are well-
known, but we give a proof for completeness. Starting
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with the left-most inequality, say Y ∗(1−α)n is less than
V2α. This means that at least (1 − α)n points from
Yn were below V2α, or in terms of the empirical CDF,
that F̂n(V2α) > 1− α. Note that nF̂n(V2α) ∼ B(n, p),
a binomial random variable with p = 1 − 2α. Using
this connection, we have

P
{
F̂n(V2α) > 1− α

}
= P

{
B(n, p)

n
− p > α

}
≤ exp

(
− nα2

2p(1− p)

)
≤ exp

(
−nα

4

)
,

where the exponential tail bound dates back to
Okamoto (1959, Thm. 2). It thus follows that we
have P{V2α ≤ Y ∗(1−α)n} ≥ 1− exp(−nα/4).

For the upper bound, in a perfectly analogous fashion,
the bad event where Y ∗(1−α)n exceeds Vα/2 is equivalent
to {B(n, p′) > nα}, where p′ = α/2. The bounds of
Okamoto (1959) in this case do not provide the desired
dependence on α, so a direct application of Bernstein’s
inequality (one-sided) for bounded random variables
will instead be used (Boucheron et al., 2013, Ch. 2).
Using a

P
{
Y ∗(1−α)n > Vα/2

}
= P

{
B(n, p′)

n
> α

}
= P

{
B(n, p′)

n
− p′ > α

2

}
≤ exp

(
−3nα

14

)
.

The desired result follows immediately from a union
bound over the two bad events, using the looser of the
two bounds.

In the main text, we gave (7) and (8) without a detailed
derivation. We fill in those details here.

Derivation of (7) and (8). Using Lemma 2 and setting
V̂α = Y ∗(1−α)n, we have

varPX
′ = varPX I{X≥V̂α}

= EPX
2I{X≥V̂α} −

(
EPX I{X≥V̂α}

)2
≤ σ2

α

..= EPX
2I{X≥V2α} −

(
EPX I{X≥Vα/2}

)2
.

(16)

As such, conditioning on Yn and assuming that the
good event of Lemma 2 holds, then using variance
bound (16) and Lemma 1 for Ĉ ′α given by (6), writing

ε(n, δ) ..=
√

(1 + log(δ−1))/n for readability, it follows
that

P
{
|Ĉ ′α −EPX

′| > cσα ε(n, δ)
}
≤

P
{
|Ĉ ′α −EPX

′| > cσ′ ε(n, δ)
}
≤ δ,

assuming that we use any of the first three methods
listed in Lemma 1, since σ′ =

√
varPX ′. Otherwise,

setting σ2
α = EPX

2 will suffice. The bound (16) is
useful since this gives us an upper bound which does
not depend on the sample Yn. Stated more precisely,
over the random draw of Xn, we have∣∣∣α Ĉα −EPX I{X≥V̂α}

∣∣∣ = |Ĉ ′α −EPX
′|

≤ cσα

√
1 + log(δ−1)

n
(17)

with probability no less than 1− δ.

Next, we consider the right-most summand in (3). This
amounts to the error that must be incurred for not
knowing Vα exactly. To control this term, first observe
that

EPX
(
I{X≥Vα} − I{X≥V̂α}

)
≤ EP V̂α

(
I{X≥Vα} − I{X≥V̂α}

)
≤ Vα/2

(
P {X ≥ Vα} − P

{
X ≥ V̂α

})
= Vα/2

(
FP(V̂α)− FP(Vα)

)
≤ Vα/2λ

(
V̂α − Vα

)
.

The first inequality is immediate from the events at-
tached to the two indicators being subtracted. The
second inequality uses the good event of Lemma 2.
The final inequality uses the local λ-Lipschitz property
via A1(γ, λ). The problem has thus been reduced to
obtaining two-sided bounds on the deviations V̂α − Vα,
which can be done easily using standard concentration
properties of the empirical distribution function, as
follows. Based on sample Yn, denote the empirical
distribution function by F̂n(u) ..= n−1

∑n
i=1 I{Yi≤u},

for u ∈ R. Considering the running assumption that
V̂α = Y ∗(1−α)n, note that for any error level 0 < ε ≤ 1,
if the deviations are V̂α − Vα > ε, then we must have
F̂n(Vα + ε) ≤ 1− α = FP(Vα). It then follows that

P
{
V̂α − Vα > ε

}
≤ P

{
F̂n(Vα + ε) ≤ FP(Vα)

}
= P

{
FP(Vα + ε)− FP(Vα) ≤ FP(Vα + ε)− F̂n(Vα + ε)

}
≤ P

{
FP(Vα + ε)− FP(Vα) ≤ sup

u∈R

[
FP(u)− F̂n(u)

]}
≤ exp

(
−2n(FP(Vα + ε)− FP(Vα))2

)
≤ exp

(
−2n(γε)2

)
.
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The first three lines are immediate from the facts just
stated. The exponential tail bound is the refined ver-
sion of Dvoretzky-Kiefer-Wolfowitz (DKW) inequality,
which holds even if FP has at most a countably infinite
number of discontinuities (Kosorok, 2008, Thm. 11.6).
The final inequality is due to the γ-growth assumption.
For lower bounds, note that if Vα − V̂α > ε, we must
have F̂n(Vα − ε) ≥ 1 − α = FP(Vα), and a perfectly
symmetric argument yields identical bounds on the
probability of {Vα − V̂α > ε}. Taking a union bound
over these two events, it follows that with probability
no less than 1− 2 exp(−2n(γε)2), we have∣∣∣EPX

(
I{X≥Vα} − I{X≥V̂α}

)∣∣∣ ≤ Vα/2λ|V̂α − Vα|
≤ Vα/2λε,

for any 0 < ε ≤ 1. Converting this into a high-
probability confidence interval, we have∣∣∣EPX

(
I{X≥Vα} − I{X≥V̂α}

)∣∣∣ ≤ Vα/2λ√
2γ

√
log(δ−1)

n
(18)

with probability no less than 1 − 2δ, assuming that
n ≥ log(δ−1)/(2γ2). Summing things up, (17) and (18)
here correspond to (7) and (8) derived in the main text,
concluding the derivation.

Proving Theorem 4 from section 2.3 The follow-
ing lemma is a helper result that will be used shortly.

Lemma 7. Let f : V → R be convex. Then, f is
λ-Lipschitz with respect to norm ‖ · ‖ if and only if
‖u‖? ≤ λ for all u ∈ ∂f(v) and v ∈ V.

Proof. See Shalev-Shwartz (2012, Lem. 2.6) for a proof.

To open up the argument, note that for any choice of
w ∈ W and v ∈ R, we can control the excess CVaR as

Cα(w)− C∗α = Cα(w)− F ∗α ≤ Fα(w, v)− F ∗α. (19)

The equality and inequality follow respectively from
Theorems 2 and 1 of Rockafellar and Uryasev (2000).
Working on the right-hand side of this inequality, we can
focus on (approximate) minimization of the function Fα.
While in principle this can be done in very sophisticated
ways, for clarity of exposition, we adapt a well-known
result for averaged stochastic gradient descent to the
objective of interest here.

Lemma 8 (Convex, Lipschitz case; averaged SGD).
Assume the function (w, v) 7→ fα(w, v; z) is convex,
and the random sub-gradients are uniformly square-
integrable in the sense that for any random vector G ∈
∂fα(w, v;Z) we have EP ‖G‖2 ≤ λ2 < +∞, where λ is

free of w and v. Then, running (11) for m iterations,
with fixed step size βt =

√
(∆2 + V 2)/m/λ, we average

the iterates as

(ŵ[m], v̂[m]) ..=
1

m

m∑
t=1

(ŵt−1, v̂t−1).

It follows that in expectation over data Z1, . . . , Zm, we
have

E
[
Fα(ŵ[m], v̂[m])− F ∗α

]
≤ λ

√
∆2 + V 2

m
.

Proof of Lemma 8. This result follows from direct ap-
plication of well-known SGD analysis, for example Ne-
mirovski et al. (2009, Sec. 2.2) or Shalev-Shwartz and
Ben-David (2014, Sec. 14.5.1), and simply requires
that the sub-gradients used are unbiased estimates
of some sub-gradient of Fα, namely that in (11) the
update directions satisfy EPGα(w, v;Z) ∈ ∂Fα(w, v).
Fortunately, convexity of fα implies that ∂Fα(w, v) =
{EPG : G ∈ ∂fα(w, v;Z)} holds (Strassen, 1965; Ne-
mirovski et al., 2009), meaning that the assumptions
of the cited works are satisfied.

In order to utilize the preceding lemma, we simply need
to confirm the required properties of fα and its subgra-
dients. First of all, the convexity of (w, v) 7→ fα(w, v; z)
follows from the convexity of w 7→ L(w; z), and ele-
mentary calculus of convex functions, e.g. Rockafellar
(1970, Thm. 5.1). Next, note that the sub-differential
of fα(w, v; z) takes the form2

∂fα(w, v; z) =
{

1
α (∇L(w; z), α− 1)

}
, if L(w; z) > v{

1
α (a∇L(w; z), α− a) : a ∈ [0, 1]

}
, if L(w; z) = v

{(0, 1)} , if L(w; z) < v.

It follows immediately that for any G ∈ ∂fα(w, v;Z),
a simple upper bound on the squared norm is obtained
as

EP ‖G‖2 ≤
1

α2

(
EP ‖∇L(w;Z)‖2 + 1

)
.

Plugging these facts into Lemma 8, we have that the
sub-processes in Algorithm 2 satisfy

E
[
Fα(w(j), v(j))− F ∗α

]
≤ λα

√
∆2 + V 2

bn/kc
, (20)

for each j ∈ [k], where the coefficient λα is defined as

λα ..=

√
EP ‖∇L(w;Z)‖2 + 1

α
. (21)

2See Bertsekas (2015, Ch. 3) for a general reference, or
Rockafellar and Uryasev (2000, Sec. 4) for the CVaR case.
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Finally, we use the fact that robust validations of the
form studied in section 2.2 let us boost the confidence
of the underlying SGD sub-processes.

Lemma 9 (Boosting the confidence under potentially
heavy tails). Assume that we have an arbitrary learning
algorithm Learn, and a validation procedure Valid such
that for sample size n ≥ 1, confidence level δ ∈ (0, 1),
and arbitrary w ∈ W, given samples Zn and Z ′n, we
have

P

{
Cα(Learn [Zn])− C∗α >

ε(n)

δ

}
≤ δ

P {| Valid [w;Z ′n]− Cα(w)| > ε′(n, δ)} ≤ δ.

Then, if we split the sample Zn into k disjoint subsets
indexed by I1, . . . , Ik, set ŵ(j) = Learn[ZIj ] for each
j ∈ [k], and ? = arg minj∈k Valid[ŵ(j);Z ′n], then for
any choice of δ ∈ (0, 1), it follows that

Cα(ŵ(?))− C∗α ≤ 2ε′(n, δ) + e ε
(⌊n
k

⌋)
with probability no less than 1− kδ − e−k.

Proof of Lemma 9. The good event of interest is the
case in which at least one of the k weak candidates
based on Zn is ε-good, and all of the k estimates made
by Valid using Z ′n are ε′-good. Taking union bounds,
by assumptions on Learn and Valid, this occurs with
probability no less than 1 − kδ − e−k. On this good
event, while we can never know which candidate is
the ε-good one, we know that such a candidate exists.
Denote this candidate by ŵ∗ ∈ {ŵ(1), . . . , ŵ(k)}. While
this candidate is unknown, on this same event, we
have ε′-accurate estimates of the CVaR risk incurred
by all candidates. As such, choosing ŵ(?), with ? =
arg minj∈[k] Valid[ŵ(j);Z ′n] means we either get a ε-
good candidate, or one that is not much worse, up to
the precision of Valid. Spelling this out precisely, we
have

Cα(ŵ(?))− C∗α
= Cα(ŵ(?))− Valid[ŵ(?)] + Valid[ŵ(?)]− C∗α
≤ Cα(ŵ(?))− Valid[ŵ(?)] + Valid[ŵ∗]− C∗α
=
[
Cα(ŵ(?))− Valid[ŵ(?)]

]
+ [Valid[ŵ∗]− Cα(ŵ∗)] + [Cα(ŵ∗)− C∗α]

≤ 2ε′(n, δ) + e ε (bn/kc) .

This is the desired result, noting that ε(·) gets bn/kc
due to the sample splitting mentioned in the lemma
statement.

With these facts in hand, it is straightforward to prove
the desired theorem.

Proof of Theorem 4. Using inequality (19) to connect
Cα and Fα, and Markov’s inequality to convert the
bounds in expectation for the sub-processes given by
(20) to high-probability bounds, it immediately follows
that the requirement on Learn in Lemma 9 is satisfied
if we set Learn[·] = Average[SGD(ŵ0, v̂0; ·,W × [0, V ])],
with ε(bn/kc) corresponding to the right-hand side
of the inequality (20), and Average simply denoting
taking the arithmetic vector mean. As for the require-
ment on Valid in Lemma 9, this is satisfied by setting
Valid[w;Z ′n] = Ĉ ′α(w;Z ′n), as defined in (10), and ε′
being controlled using Theorem 3 with X = L(w;Z),
to obtain

ε′ (n, δ) ≤
√

2

α

(
cσα(w) +

Vα/2(w)λ(w)
√

2γ(w)

)√
1 + log(5δ−1)

n
.

Here σα(w) is given by (16) with X = L(w;Z), and
(γ(w), λ(w)) correspond to the parameters in A1 ap-
plied to the distribution of X = L(w;Z). Using A2,
we bound all the w-dependent factors using λ/γ, σα,
and V α/2. Also compared with the bound in Theorem
3, note the factor of 5 in the logarithmic term used to
get a 1− δ confidence interval, and the

√
2 factor due

to splitting the sample.

Placing things in the context of Algorithm 2, the con-
crete Learn and Valid procedures just described are
precisely what Algorithm 2 implements. As such, we
can use Lemma 9 and the bounds on ε and ε′ just
discussed to get bounds on Cα(w(?)) with probability
no less than 1− kδ− e−k. To clean up this probability,
let us specify the number of partitions carefully. Writ-
ing kδ ..= dlog(δ−1)e and δ∗ ..= δ/2kδ, where δ ∈ (0, 1)
is the confidence parameter of Theorem 4, set the
number of partitions to be k = kδ∗ = dlog(1/δ∗)e =
dlog(2dlog(δ−1)eδ−1)e. It is straightforward to bound
kδ∗δ

∗ ≤ 2δ and exp(−kδ∗) ≤ δ, which gives probability
of at least 1−3δ. Finally, plugging λL from A2 into the
definition of λα in (21) yields the desired result.

A.2 Details of empirical analysis

A.2.1 Accuracy of pointwise estimates

Experimental setup Recalling the notation of sec-
tion 2.2, given samples Xn and Yn, all sampled in-
dependently from X ∼ P, the objective here is to
investigate the deviations |Ĉα −Cα|, in particular how
these deviations change for different estimators Ĉα,
distributions P, sample sizes n, and risk levels α. For
choice of P, we test three distribution families: folded
Normal, log-Normal, and Pareto. We have set these
distributions such that the width of their inter-quartile
range is approximately the same (fixed at 3.4) for all
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choices of P. We test a range of values for n and α.
Each distinct experimental setting is characterized by
the triplet (P, n, α), and for each experimental setting,
we run 10000 independent trials, from which we ob-
tain box-plots as well as the empirical average and
standard deviation for |Ĉα − Cα|. For Cα, instead of
using numerical integration, instead for each choice of
(P, α), we prepare two independent large samples from
P, each of size n = 108, compute Vα as the empirical
(1− α)-level quantile on the first large sample, and Cα
as
∑n
i=1XiI{Xi≥Vα}/(nα) on the second large sample.

Regarding the methods being compared, all procedures
estimate Vα in the same way, namely by sorting Yn
and using the (1 − α)-level quantile. The key differ-
ences are in how Ĉα is computed. As baseline meth-
ods, we consider the classical empirical mean (denoted
Empirical) and the random truncation method stud-
ied by Prashanth et al. (2019) (denoted R-Trunc). The
latter depends on an upper bound (u in their notation),
which we set as the empirical mean of {X2

i : i ∈ [n]}.
To compare this with algorithms that newly fall under
the scope of our analysis in section 2.2, we consider
Algorithm 1 implemented using special cases Cat (de-
noted Cat-12) and MoM (denoted MoM) mentioned in
Lemma 1. The former requires an empirical scale es-
timate, which we do using a standard M-estimate of
dispersion, precisely following Holland and Ikeda (2019)
(and their online code). The latter requires the sample
Xn to be split into k independent subsets, and we set
k = 1 + d3.5 log(δ−1)e following Prasad et al. (2018, Al-
gorithm 3). All methods aside from Empirical depend
on a confidence parameter δ, which we set to δ = 0.02.

Results and discussion Key results for the con-
ditions described above are summarized in Figures 4
and 5. Starting with Figure 4, we see that ranging
from small to large values of n, across all the distribu-
tions considered, the M-estimator approach (Cat-12)
achieves a strong balance between robustness to outliers
and bias, leading to superior performance on average
with competitive variance. Moving to Figure 5, we
observe an analogous trend as we take α from large to
small with a fixed sample size. In both settings, the bias
of the other two robust methods leads to deviations
that are worse on average than the naive empirical
mean. As a general take-away, we see that using a
slightly more sophisticated estimation procedure can
lead to clear improvements in estimation in a poten-
tially heavy-tailed setting. For our purposes, it is worth
noting that the empirical procedure which performed
best overall (Cat-12) is a procedure captured by the
theory of section 2.2.

A.2.2 Application to learning algorithms

Experimental setup As a natural first application,
we consider linear regression in the context of CVaR-
based learning. That is, random data are generated
as pairs Z = (X,Y ) ∼ P following the relation Y =
〈w∗, X〉 + E, where E is a zero-mean random noise
term independent of X, and w∗ ∈ W is some pre-fixed
vector. We consider two types of losses, namely squared
error and absolute deviations, respectively amounting
to L(w;Z) = (〈w − w∗, X〉 − E)2/2 and L(w;Z) =
|〈w − w∗, X〉 −E|. The learner does not know w∗ and
cannot observe E directly, all it has is access to X and
Y , and thus the final loss values (and resulting partial
derivatives, etc.). The main reason for studying two
different losses is as follows. The squared error is used
very commonly in practice, but does not satisfy the λL-
Lipschitz requirement made by A2 unless the noise E
is bounded. In contrast, the absolute error satisfies the
Lipschitz requirement even when E is unbounded and
heavy-tailed. One point of interest will be to compare
these two cases, and see how far the theoretical insights
from Theorem 4 extend beyond the formal conditions.

Regarding the methods to be studied, we compare Al-
gorithm 2 (denoted RV-SGDAve) with three well-known
baseline methods. As a classical baseline, we consider
a batch gradient descent implementation of empirical
CVaR risk minimization (denoted ERM-GD), i.e., typical
iterative gradient descent where the update direction
comes from the gradient (or sub-gradient) of the usual
empirical estimate of Fα(w, v). Note that this is an
update in d + 1 dimensions optimizing both w ∈ W
and v ∈ R, so no direct estimates of Vα are made.
We consider two alternative learning algorithms, which
were designed (in the context of risk estimation) to
be robust and computationally efficient under poten-
tially heavy-tailed losses. These are robust gradient
descent routines based on M-estimation (Holland and
Ikeda, 2019) and median-of-means (Chen et al., 2017;
Prasad et al., 2018), respectively denoted RGD-M and
RGD-MoM. Essentially, instead of simply taking the em-
pirical means of the sampled sub-gradients of f(w, v;Z)
as is done by ERM-GD, these RGD-* methods incorporate
an extra sub-routine at each step for aggregating the
sub-gradients in a robust way such that the impact
of outliers is dampened, reducing superfluous random
exploration in a convex loss setting.

We study the impact that changes in the underlying
distribution P have on different learning algorithms at
fixed levels of n, d, and α. For simplicity, in the nascent
tests that we have conducted here, we fix n = 500,
d = 2, and α = 0.05 throughout. In all experiments,
X follows an isotropic standard multivariate Normal
distribution, and it is the distribution of additive noise
E that we control as a key experimental condition.
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Figure 4: Analysis of deviations over n, for fixed α = 0.05. Top: folded-Normal. Middle: log-Normal. Bottom:
Pareto.

Fixing A ∼ Normal(0, b2), we consider E = A − EA
(Normal case), E = eA −E eA (log-Normal case), and
finally E = A′ −EA′ where A′ has a Pareto distribu-
tion (Pareto case). To control the signal/noise ratio,
we set the parameters such that all three cases, the
width of the interquartile range of E is constant, at
a value of 3.0. More precisely, we set b = 2.2 for the
Normal case, b = 1.75 for the log-Normal case, and set
A′ to have a Pareto distribution with shape 2.1 and
scale 3.5.3 Batch methods are set to have a fixed step
size of 0.1/

√
d, while Algorithm 2 has a fixed step size

of 0.01/
√
d. All methods are run until they spend a

fixed “budget,” where the cost is measured in terms of
gradient evaluations, i.e., one cost is spent each time a

3This noise is generated using the Python library
scipy (ver. 1.4.1), in particular via the function
scipy.stats.pareto(b,scale), where we have b = 2.1
and scale = 3.5.

sub-gradient of f(w, v;Zi) is computed for any (w, v)
and any i. The budget for all methods is fixed to 40n;
this means Algorithm 2 is allowed to take multiple
passes over the data, going beyond the scope of Theo-
rem 4; the stability beyond the single-pass threshold is
a natural point to study empirically. We note that all
numerical experiments have been implemented using
Python (ver. 3.8), using just libraries numpy (ver. 1.18)
and scipy (ver. 1.4.1).

Results and discussion Our main results for this
section are summarized in Figure 3. Here “excess CVaR
risk” refers to Fα(w, v) − F ∗α approximated on an in-
dependent large test set of size 105, where F ∗α is set
to the value achieved by an oracle batch gradient de-
scent routine using the full test run for many iterations.
Thus the performance is relative, stated with respect
to what could be achieved given a sample many orders
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Figure 5: Analysis of deviations over α, for fixed n = 10000. Top: folded-Normal. Middle: log-Normal. Bottom:
Pareto.

of magnitude larger. We have run 250 independent
trials of this experiment, and the average and standard
deviation values in Figure 3 reflect statistics taken over
these trials. The immediate take-away is that the pro-
posed algorithm offers an appealing improvement in
efficiency, realizing superior CVaR-risk using far less
operations. Furthermore, this is robust both to the un-
derlying distribution, and the nature of the underlying
loss. That is, even when the λL-Lipschitz assumption
on the loss breaks down (left-hand side of Figure 6),
we see competitive behaviour.
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Figure 6: Excess CVaR risk for squared error (left-most plots) and absolute error (right-most plots). Top:
folded-Normal. Middle: log-Normal. Bottom: Pareto.
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