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Some useful references

I Polynomial basics: Axler (1997, Ch. 4)

I Eigenvalue/vector basics: Axler (1997, Ch. 5,10), Horn and
Johnson (1985, Ch. 1)

I More advanced results: Axler (1997, Ch. 8-9)
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2. Key questions and foundational results

3. More involved topics

2



Lecture contents

1. Invariant spaces and eigenvalues/vectors

2. Key questions and foundational results

3. More involved topics

2



Important idea 1: “powers” of linear operators

Linear operators have important properties not shared by linear maps
in general.

For S ∈ L(U,V) for U 6= V , as

S(u) ∈ V, S(S(u)) is not defined!

Thus the “product” SS is meaningless.

(*) For operator T ∈ L(U) however,

Tm(u) ..= (T · · · T)︸ ︷︷ ︸
m-product

(u)

is both defined and indeed Tm ∈ L(U).

3



Important idea 2: invariant sets
Defn. For T ∈ L(U), we call subset E ⊂ U invariant under T
whenever

T(w) ∈ E, ∀w ∈ E.

Of course, for T-invariant E ⊂ V , any w ∈ E is s.t.

Tm(w) ∈ E, m > 0.

Thus, we naturally consider the “dynamics” induced by T , namely

w(k)
..= Tk(w), k = 0, 1, 2, . . .

with T0 ..= I.

Comment. These notions are fundamental to ergodic theory :

{ergodic theory} ≈ {dynamical systems} ∩ {measure/prob. theory}.
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Some examples

Example. (*) One may readily note for any T ∈ L(U),

I U and {0} are T-invariant

I range T and null T are T-invariant

(*) Let T ∈ L(Pk(R)) be (Tp)(·) ..= p′(·). Then Pl(R) is T-invariant
for any l ≤ k.

(*) Say subspace W ⊂ U of dim W = 1 is T-invariant. Note we may
always find a w0 ∈ W s.t.

T(w0) = αw0,

an equation that should foreshadow our next topic.
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Eigenvalues/vectors of operators
The vectors which are only scaled by a given operator (if they exist)
can tell us a great deal about the operator (as we’ll see).

Assume vector space U on F (R or C) with dim U <∞.

Defn. Given T ∈ L(U), if α ∈ F is s.t.

Tu = αu

for some u 6= 0, then we call α an eigenvalue of T .
Call σ(T) ..= {α ∈ F : α an eigenvalue of T} the spectrum of T .

For any α ∈ σ(T), if Tv = αv, we call v an eigenvector associated
with α.

The “dynamics” of T initiated at eigenvector u are easy:

Tm(u) = αmu,

all we need is to know α.
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Basic properties and facts 1
(*) If α ∈ σ(T) with eigenvector u, then βu is also an eigenvector
associated with α, for any β ∈ F.

(*) We now can develop our previous remarks further, as

∃W ⊂ U, dim W = 1,T-invariant ⇐⇒ T has an eigenvalue,

a nice characterization.

(*) A useful fact is that

α ∈ σ(T) ⇐⇒ (T − αI) ∈ L(U) is non-invertible,

and equivalently non-injective, non-surjective.

(*) Using this, note for any α ∈ σ(T),

{eigenvectors of T wrt α} is a subspace of U.
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Basic properties and facts 2

Do distinct eigenvalues have some special meaning?

(**) Let α1, . . . , αm ∈ σ(T) be distinct, i.e., αi 6= αj, i 6= j. Take any
corresponding non-zero eigenvectors u1, . . . , um. Then,

{u1, . . . , um} is linearly independent.

(*) Thus, number of distinct eigenvalues of any T ∈ L(U) is controlled
by the dimension, namely |σ(T)| ≤ dim U.

As we work through basic results, a number of natural questions
arise...
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Questions to motivate our theory

Fix some T ∈ L(U), dim U <∞.

If and when do eigenvalues of T exist?

How many distinct/multiple eigenvalues does T have?

What (useful) information on T does spectrum σ(T) encode?

Is spectral information shared between an operator
and its matrix representations?

We shall seek (at least partial) answers to all of these questions.
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Constructing operator polynomials
Let T ∈ L(U). Recalling our definition of Tm ..= T · · · T (m > 0 times)
and T0 ..= I, for the case of invertible T we add

T−m ..= (T−1)m.

(*) We then have for m, n ≥ 0,

Tm+n = TmTn, (Tm)n = Tmn.

Now, take p ∈ Pm(F), a function p : F→ F taking the form

p(z) = a0 + a1z + · · ·+ amzm.

Defn. Given T ∈ L(U), we define for every p ∈ Pm(F) the map

p(T) ..= a0I + a1T + · · ·+ amTm.

(*) Clearly p(T) ∈ L(U).
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Properties of operator polynomials
The key utility: we can factor p(T) just as we can factor p!

(*) To see this, verify for p, q ∈ Pm(F), we have

(pq)(T) = p(T)q(T).

(*) From this q(T)p(T) = p(T)q(T) follows.

Example. We know polynomial p ∈ Pm(C) factors as

p(z) = c(z− λ1) · · · (z− λm),

for c 6= 0 where λi are the roots of p (up to multiplicity). Defining
qi(z) ..= (z− λi), i = 1, . . . ,m and q0(z) ..= c, we have that
p = q0q1 · · · qm. Thus,

a0I + a1T + · · ·+ amTm = p(T)

= (q0q1 · · · qm)(T)

= q0(T) · · · qm(T)

= c(T − λ1I) · · · (T − λmI).
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Existence of eigenvalues
We may now (partially) answer our first question.

(**) For finite-dim U on field C, for any T ∈ L(U),

σ(T) 6= ∅.

i.e., all complex linear operators have an eigenvalue.

(*) This says for operator T on complex vector space U, ∃ basis B s.t.

M(T;B) =


λ

0 ∗
...
0


This observation highlights an important theme we look at shortly.

Remark. Note we have made no reference to determinants thus far.
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Spectral properties of operators and their matrices

The question of “shared” spectral information is easy to answer.

(*) Take T ∈ L(U) and any basis B. Then,

α ∈ σ(T) ⇐⇒ α ∈ σ(M(T;B)),

that is eigenvalues of T coincide with those of any matrix
representation of T , thus spectral info encoded.
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Simple matrix representations and invariant sets 1
We’ve seen M(T;B) encodes information on T .
Matrices with a simple structure are “easier to decode” than others.

Goal: choose B so that M(T;B) is “simple.”

What properties of T determine whether this can be done or not?

Defn. We call A ∈ Fn×n upper-triangular when aij = 0 for all i > j.

(*) Let T ∈ L(U), with basis B = {u1, . . . , un}. The following are
equivalent:

A M(T;B) is upper-triangular.
B T(uj) ∈ [{u1, . . . , uj}], for j = 1, . . . , n.
C [{u1, . . . , uj}] is T-invariant, for j = 1, . . . , n.

(*) Clearly, if T has upper-tri representation, σ(T) is non-empty.
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Simple matrix representations and invariant sets 2
Do we always have an upper-tri representation?
If U is on C, then yes.

(**) For any T ∈ L(U), ∃B s.t.

M(T;B) is upper-triangular.

The proof is straightforward, using an induction argument on
dimension of U, and fact that σ(T) non-empty.

(*) For T ∈ L(U), let A ..= M(T;B) be upper-tri. Then,

T is invertible ⇐⇒ aii 6= 0, i = 1, . . . , n.

Thus we may trivially read off A whether or not T is invertible.
Proof best done using contraposition (both ways).
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Simple matrix representations and invariant sets 3
Operator eigenvalues also can be read off upper-tri representations.

(*) For T ∈ L(U), dim U = n, let B be such that A ..= M(T;B) is
upper-tri. Then,

σ(T) = {a11, . . . , ann}.

Just investigate M(T − αI;B) for any α ∈ σ(T).

Defn. An even simpler special case is that of diagonal matrix
representations, where aij = 0, all i 6= j.

(*) We may readily note for T ∈ L(U) and basis B = {u1, . . . , un},

M(T;B) is diagonal ⇐⇒ ui are eigenvectors of T.
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Simple matrix representations and invariant sets 4

Existence of diagonal representations is much stronger than that of
upper-triangularity:

Example. (*) Consider T : C2 → C2 defined T(z) ..= (z2, 0). Show 0
is the only valid eigenvalue of T ∈ L(C2), and that

{z ∈ C2 : z2 = 0}

is precisely the set of eigenvectors of T , to conclude T has no diagonal
representation.

Thus, even on C, cannot always diagonalize.

On R, even upper-tri representations need not exist. . .
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Characterizing diagonalizability
(*) From our previous results, we may easily note for T ∈ L(U) and
dim U = n that

|σ(T)| = n =⇒ ∃B s.t. M(T;B) is diagonal.

This is not a necessary condition, however (stronger than needed).

(**) Let dim U = n, and let α1, . . . , αm ∈ σ(T) be distinct, 0 ≤ m ≤ n.
The following are equivalent:

A ∃B s.t. M(T;B) is diagonal.
B ∃B = (u1, . . . , un) s.t. all ui are eigenvecs of T .
C Exists subspaces U1, . . . ,Un, all T-invariant and dim Ui = 1,

where U = U1 ⊕ · · · ⊕ Un.
D U = null(T − α1I)⊕ · · · ⊕ null(T − αmI)
E dim U = dim null(T − α1I) + · · ·+ dim null(T − αmI)

Clearly, need not have all distinct eigenvalues.

18



Existence of eigenvalues in the real case 1
The F = R case is less friendly.
(*) For U on R and T ∈ L(U), σ(T) may be empty. If so,

=⇒ exists no T-invariant W ⊂ U with dim W = 1.

This trickiness is closely related to the existence of roots of real
polynomials:

(*) Recall that p(x) ..= x2 + ax + b, for a, b ∈ R, is such that

p(x) = (x− α1)(x− α2), α1, α2 ∈ R ⇐⇒ a2 ≥ 4b.

(**) As well, for non-constant p ∈ P(R), have unique factorization

p(x) = c(x− α1) · · · (x− αm)(x2 + a1x + b1) · · · (x2 + aMx + bM),

for m,M ≥ 0 where c, αi ∈ R, (ai, bi) ∈ R2, and a2
i < 4bi.
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Existence of eigenvalues in the real case 2

We use these basic facts to consider the real case.

In moving from C to R, existence statements for invariant subspaces
must be weakened:

(**) Take U over R, 1 ≤ dim U = n. Then, ∃W ⊂ U s.t.

W is T-invariant and 1 ≤ dim W ≤ 2.

The problem of course:
dim-2 invariant subspaces need not imply an eigenvalue.
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Existence of eigenvalues in the real case 3

While not ideal, the previous result allows us to prove a neat fact:

(**) Take U on R. Then,

dim U is odd =⇒ ∀T ∈ L(U), σ(T) 6= ∅.

The base case of dim U = 1 is trivial; an induction argument on the
dimension of U proves this.
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Answering some more subtle questions

Recall that our previous question,

How many distinct/multiple eigenvalues does T have?

has not been answered yet. As well, related questions such as

Is there a “middle ground” between upper-triangular
and diagonal representations?

Can we define “invariants” of T using intrinsic information?

still require answers.

With some effort, we can answer these questions.
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Generalized eigenvectors 1
Take T ∈ L(U), dim U = n.
Let α1, . . . , αm be distinct eigenvalues of T . Even if m < n, recall

T “has enough eigenvectors”
(= exists eigenvecs u1, . . . , un s.t. {u1, . . . , un} a basis of U)

=⇒ T is “as nice as possible.”

That is, we require that the bases of the m ≤ n “eigenspaces”

null(T − αiI) = {u ∈ U : Tu = αiu}, i = 1, . . . ,m

furnish a basis of U.

In general (non-diagonal cases), we don’t have enough linearly
independent eigenvectors. Thus “ideal case” structural results fail.
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Generalized eigenvectors 2
For more general cases, the following generalization is key.

Defn. Fix α ∈ F. Say u ∈ U is a generalized eigenvector of T if

(T − αI)k(u) = 0,

for some integer k > 0.

(*) If holds for u 6= 0, then note that any such α is α ∈ σ(T).

Example. (*) Let T ∈ L(C3) be T(z) ..= (z1, 0, z3). Show 0, 1 ∈ σ(T)
and that letting α1

..= 0, α2
..= 1, have

C3 = null(T − α1I)2 ⊕ null(T − α2I)

This example foreshadows an important general result (shortly).
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Nilpotent operators
Defn. We call S ∈ L(U) nilpotent if Sk = 0 for finite k > 0.

(*) Say S is nilpotent on U. Then, have

{0} = null S0 ⊂ null S ⊂ null S2 ⊂ · · · ,

and if have null Sm = null Sm+1 for some m, then

=⇒ null Sm = null Sl, ∀ l ≥ m.

(*) Fortunately we always reach such a limit, as

null Sdim U = null Sdim U+1 = · · · .

(*) In fact, for nilpotent S ∈ L(U) we always have

Sdim U = 0.
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Nilpotent operators and gen’d eigenvectors

(*) From these basic results it is not hard to verify for α ∈ σ(T) that

null(T − αI)dim U = {all gen’d eigenvectors of T wrt α}.

Using some of these ideas, we move forward to a very important topic.

26



Multiplicities 1

For T ∈ L(U), dim U = n, let A ..= M(T;B) for any basis B s.t. A is
upper-tri. Then, we know

σ(T) = {a11, . . . , ann},

So when |σ(T)| < n we must have “multiples” on diagonal of A.

Do the duplicates on diagonal of M(T;B)
depend on choice of B?

Can we characterize how many times
a given α ∈ σ(T) appears?

An idea: number of multiples of α = dim null(T − αI)?
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Multiplicities 2

Example. (*) Define T ∈ L(C2) s.t.

M(T) =
[

5 1
0 5

]
taken WRT the standard basis. Note eigenvalue 5 appears twice.

However, dim null(T − 5I) = 1, so the idea fails.

Defn. The dimension of the eigenspace of α is often called the
geometric multiplicity of α ∈ σ(T).
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Multiplicities 3
A very important result with a slightly involved proof gives us the “right”
answer for characterization.

(**) Let T ∈ L(U) on F, and α ∈ σ(T). For any basis B where
M(T;B) is upper-tri,

α repeats on diagonal dim null(T − αI)dim U times.

Defn. We’ll call the dimension of the “generalized eigenspace”
null(T − αI)dim U the (algebraic) multiplicity of α.

(*) Take U over C and T ∈ L(U) with distinct eigenvalues α1, . . . , αm

with multiplicities d1, . . . , dm we pleasantly have

d1 + · · ·+ dm = dim U.

This certainly need not hold for the geometric multiplicities.
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An intuitive characteristic polynomial 1

All this talk of multiplicities relates to a key concept: the “characteristic
polynomial” of a linear operator.

You may recall from undergraduate LA that fixing A ∈ Fn×n,

det(αI − A)

viewed as a function of α ∈ F is often of interest.

This works for square matrices, but there are some issues:

I We want a CP for general T ∈ L(U)

I We haven’t defined det T for general operators yet

I We want a CP defined using intrinsic properties of T
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An intuitive characteristic polynomial 2
We thus define a natural polynomial qT which encodes all the spectral
information of a given T .

Defn. Assume U on C. Let T ∈ L(U) with distinct eigenvalues αi

having multiplicities di, i = 1, . . . ,m. We define the characteristic
polynomial qT of T by

qT(z) ..= (z− α1)
d1 · · · (z− αm)

dm .

Important: this elegant definition is only for C.

(*) For any T ∈ L(U), degree of qT is dim U. Roots of qT are
precisely the distinct eigenvalues of T .

(**) A straightforward argument shows

qT(T) ..= (T − α1I)d1 · · · (T − αmI)dm = 0,

which is the Cayley-Hamilton theorem on C.
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What about the case of U on R?
While still doable, working on R is more troublesome.

The results are all analogous, just less pliable than the C case.

First, instead of being able to upper-triangularize, we can
“upper-block-triangularize”:

(**) Let T ∈ L(U), U over R. Then exists basis B s.t.

M(T;B) =

A1 ∗
. . .

0 Am


where Ai are at most 2× 2 real matrices, and if 2× 2, then have no
eigenvalues.

The “no eigenvalues” quality will be utilized shortly.
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Multiplicities in the R case 1
Recall for T ∈ L(U) on C we had the nice fact that

sum of multiplicities of T ’s eigenvals = dim U.

On R, this cannot possibly hold in general (σ(T) = ∅ possible).

In fact, even if have some eigenvalues, need not hold:

Example. (*) Let T ∈ L(R3) where (WRT std. basis)

M(T) =

3 −1 2
3 2 −3
1 2 0

 .
Clearly 1 ∈ σ(T), eigenvec (1, 0, 1). With effort, can check that
σ(T) = {1}, just one eigenval. However, verify that

dim null(T − I)3 = 1 < dimR3.

Clearly something is missing.
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Multiplicities in the R case 2

We need a new eigenvalue-like object to fill in the gap. Recall

M(T;B) =

A1 ∗
. . .

0 Am

 ,
the “block-upper-tri” form is always feasible.

We define a new object using the 2× 2 blocks.

How should we do this?
To motivate: let’s extend our CP qT definition to the R case.
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Extending qT to the R case 1
In the C case, for T ∈ L(U) we can always get

M(T;B) =

α1 ∗
. . .

0 αn

 ,
and using the algebraic multiplicities of the αi, we built qT as

qT
..= q(1)T · · · q

(n)
T

using q(i)T (z) ..= (z− αi) as “building blocks.”

On R, we need to settle for

M(T;B) =

A1 ∗
. . .

0 Am

 .
If m = n and Ai = [αi], i = 1, . . . , n then fine; original qT works.
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Extending qT to the R case 2
In general, will have m ≤ n and 2× 2 block matrices Ai present.

Let’s “aim for Cayley-Hamilton.”
Start with dim U = 1 case. Trivially, M(T;B) = [α1], and

qT(T) ..= q(1)T (T) ..= (T − α1I) = 0.

(*) Next, dim U = 2 case. Let B = (u1, u2). Say

M(T;B) =
[

a c
b d

]
.

Might naturally check (z− a)(z− d) as a first try. Note that

(T − aI)(T − dI)(ui) = bcui, i = 1, 2.

Fortunately (T − aI)(T − dI)− bcI = 0, yielding a good suggestion.
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Extending qT to the R case 3

An idea for an extended characteristic polynomial is thus born.
Let Ai, i = 1, . . . ,m be upper-tri blocks of M(T;B) for U on R. Let

q(i)T (z) ..=

{
(z− a) if Ai = [a]
(z− a11)(z− a22)− a21a12 if Ai is 2× 2

and then set qT
..= q(1)T · · · q

(m)
T .

Note however, that

The Ai are basis-dependent; is this new qT well-defined?

Actually, yes. We’ll see this now.

37



New object to fill in the multiplicity gap 1

Note that each piece q(i)T (T) (in operator form) of our improved qT is

either (T − αI) or (T2 + aT + b).

(**) Take any basis B of U such that M(T;B) is block-upper-tri, with
blocks A1, . . . ,Am. Then, for any α ∈ R,

|{j : Aj = [α]}| = dim null(T − αI)dim U,

and for any a, b ∈ R where a2 < 4b,

|{j : q(j)T (z) = z2 + az + b}| = dim null(T2 + aT + bI)dim U

2
.

It is precisely these special “eigenpairs” (a, b) that close the gap...
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New object to fill in the multiplicity gap 2
Admittedly, the previous result is a bit subtle.
Let B be basis s.t. M(T;B) in block-upper-tri form (blocks A1, . . . ,Am).

Regarding “eigenpairs” :
(*) First note, if 2× 2 matrix A has no eigenvalues, then exists
a, b ∈ R such that a2 < 4b and

x2 + ax + b = (x− a11)(x− a22)− a12a21.

(*) Also, if a2 < 4b, then

T2 + aT + bI not injective ⇐⇒ dim null(T2 + aT + bI)dim U > 0.

Define eigenpair to be any (a, b) satisfying left-hand side.

I If (a, b) an eigenpair, then Aj such that q(j)T (z) = z2 + az + b will
always appear.

I Conversely, for each of the 2× 2 matrices Aj, have that

dim null(q(j)T (T))dim U ≥ 2.

39



New object to fill in the multiplicity gap 3

Regarding eigenvalues:

I If α ∈ σ(T), then Aj = [α] will always appear for some j.
I Conversely, if Aj = [α], then necessarily α ∈ σ(T).

Important conclusion:

Regardless of what B we take to define qT , it is the same.

This of course uses the fact that

q(1)T · · · q
(m)
T = q(π1)

T · · · q(πm)
T

under any permutation π.

Thus, our new qT extended to R case is valid.
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New object to fill in the multiplicity gap 4

Recall extending qT was a means to a separate end, namely, “filling in
the multiplicity gap” on R.

Defn. We analogously define the multiplicity of eigenpair (a, b) by

d̃ ..=
dim null(T2 + aT + bI)dim U

2
.

(*) Thus for T ∈ L(U) with eigenvals α1, . . . , αm and eigenpairs
(a1, b1), . . . , (aM, bM),

dim U =

m∑
i=1

di +

M∑
j=1

2d̃j.

Of course 0 ≤ m,M ≤ dim U, but max{m,M} > 0.
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Return of invariant subspaces: key structural result

To wrap this discussion up, a great result. Using notation from
previous slide

Ui
..= null(T − αiI)dim U, i = 1, . . . ,m

Ũj
..= null(T2 + ajT + bjI)dim U, j = 1, . . . ,M.

(**) We have for T ∈ L(U), U on R, that

U = U1 ⊕ · · · ⊕ Um ⊕ Ũ1 ⊕ · · · ⊕ ŨM

and all Ui, Ũj are indeed T-invariant subspaces.
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Defining “invariants” of T intrinsically 1
One may note for T ∈ L(U) on F, dim U = n, expanding

qT(z) = zn + cn−1zn−1 + · · ·+ c1z + c0,

we have that in particular cn−1 and c0 take simple forms:

c0 = (−1)nα1 · · ·αmb1 · · · bM

cn−1 = (−1)(α1 + · · ·+ αm − a1 − · · · − aM)

We have in fact found definitions of the trace and determinant of
operator T ,

trace T ..= α1 + · · ·+ αm − a1 − · · · − aM

det T ..= α1 · · ·αmb1 · · · bM.

It turns out these quantities indeed coincide with their standard matrix
counterparts.
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Defining “invariants” of T intrinsically 2

(**) It is quite remarkable that for any basis B,

trace T = trace M(T;B)

det T = det M(T;B)

which is reassuring, and indeed our characteristic polynomial also is
equivalent with the usual definition,

qT(z) = det(zI − T).

Proving these facts isn’t difficult. See Axler (1997, Ch. 10).
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Finding sparse representations

Recall our final remaining subtle question:

Is there a “middle ground” between upper-triangular
and diagonal representations?

Yes, and it’s about as sparse as a non-diagonal (but still upper-tri)
representation can be.

This is the “Jordan form” of operator T , defined for every T in the
complex case.

We have the tools need to prove this, but omit due to time constraints.
Nice proofs in Axler (1997, Ch. 8), Horn and Johnson (1985, Ch. 3).
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Jordan form
(**) For T ∈ L(U), U on C, there exists basis BJ s.t.

M(T;BJ) =

J1 ∗
. . .

0 Jm


where each block matrix J (k × k for 1 ≤ k) is of the form

J =


α1 1 0

. . . . . .
. . . 1

0 αk

 .
Defn. Call such a basis a Jordan basis of T , and M(T;BJ) a Jordan
form of T .

Equivalently, every complex matrix is similar to a Jordan matrix.
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